PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE

MA6459- NUMERICAL METHODS

PART-B QUESTIONS

UNIT – I

SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

- 1. Find the positive root of x⁴ x = 10 correct to three decimal places using
 Newton Raphson method. [A.U MAY 1996, A.U A/M 2010]
- 2. Using Newton iterative method find the root between 0 & 1 of $x^3 = 6x 4$ correct to two places. [A.U MAY 2000, A.U M/J 2008]
- 3. Find the real positive root of $3x \cos x 1 = 0$ by newton method coprrect to 6 decimal places. [A.U 2015, A.U M/J 2007, N/D 2009]
- 4. Find a root of $x\log_{10}x 1.2 = 0$ by N R method correct to 3 decimal places.

[A.U N/D 2015, M/J 2007, M/J 2010, N/D 2010]

- 5. Obtain newton iterative formula for finding root N. where N is a positive real number.

 Hence evaluate root of 142.

 [A.U MAY 1999]
- 6. Solve the following system of equations by Gauss Jordon method.

$$10x+y+z = 12$$
, $2x+10y+z = 13$, $x+y+5z = 7$

[A.U A/M 2008, M/J 2010, N/D 2014]

7. Solve the following system of equations by Gauss – Jacobi method.

$$27x+6y-z = 85$$
, $x+y+54z = 110$, $6x+15y+2z = 72$

[A.U A/M 2009, M/J 2006, M/J 2010]

8. Solve the following system of equations by Gauss – Jacobi Gauss – Seidel method.

$$20x+y-2z = 17$$
, $3x+20y-z = -18$, $2x-3y+20z = 25$

[A.U M/J 2009, N/D 2009]

9. Using Gauss – Jordon method, find the inverse of $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$

[A.U N/D 2004, APL 2000, OCT 1996]

10. Find the dominant eigen value and the corresponding eigen vetor of $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Find

also the least latent root and hence the third eigen value also.

[A.U M/J 2010, M/J 2007, A/M 2008, A/M 2010]

11. Find the numerically largest eigen value of $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ and the corresponding eigen vector [A.U M/J 2006, A/M 2008]

12. Apply Jacobi process to evalute the eigen values and eigen vectors of the

matrix
$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{pmatrix}$$
 [A.U A/M 2015]

UNIT - II

INTERPOLATION AND APPROXIMATION

1. Find the polynomial f(x) by using Lagrange's formula and hence find f(3) for

X	0	1	2	5
f(x)	2	3	12	147

[A.U A/M 2008]

2. Using Lagrange's interpolation, calculate the profit in the year 2000 from the

following data:

[A.U A/M 2011]

Year:	1997	1999	2001	2002
Profit in lakhs of Rs.	43	65	159	248

[A.U A/M 2014]

3. Find the missing term in the following table using Lagrange's interpolation.

X	0	1	2	3	4
у	1	3	9	-	81

[A.U A/M 2011]

4. Find the lagrangian interpolating polynomial for the following data:

X	1	2	3	5

f(x)	0	7	26	124

[A.U 2010, M/J 2010]

5. Using Newton's divided difference formula, find u(3) given u(1) = -26, u(2) = 12, u(4) = 256, u(6) = 844.

[A.U A/M 2004]

6. Foind f(x) as a polynomial in x for the following data by Newton's divided difference formula

X	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

[A.U N/D 2013]

7. Find the missing term in the following table using divided difference.

	X	1	2	4	5	6
•	у	14	15	5	-	9

[A.U A/M 2012]

8. Obtain the cubic spline approximation for the function y = f(x) from the following data, given that y_0 " = y_3 " = 0.

X	-1	0	1	2
f(x)	-1	1	3	35

[A.U M/J 2010, N/D 2010,2011]

9. Using Newton's forward interpolation formula, find the polynomial f(x) satisfying the follwing dta. Hece evaluate y at x = 5.

X	4	6	8	10
У	1	3	8	10

[A.U A/M 2014]

10. Use Newton's backward difference formula to consruct an interpolating polynomial of degree 3 for the data: f(-0.75) = -0.07181250, f(-0.5) = -0.024750,

f(-0.25) = -0.33493750, f(0) = 1.10100. Hence find f(-1/3)

[A.U A/M 2013]

11. From the following data, find Θ at x = 43 and x = 84

X	40	50	60	70	80	90
Ө	184	204	226	250	276	304

[A.U N/D 2010,2011]

12. From the data given below, find the number of students whose weight is between 60 to 70.

Weight in lbs:	0-40	40-60	60-80	80-100	100-120
No. of students	250	120	100	70	50

[A.U N/D 2003, A/M 2010,2011,2012]

13. The following data are taken from the table:

Temp. ⁰ C:	140	150	160	170	180
Pressure kgf/cm ²	3.685	4.854	6.302	8.076	10.225

[A.U M/J 2009, N/D 2010]

UNIT-III

NUMERICAL DIFFERENTIATION AND INTEGRATION

1. Given data (A.U M/J 2015)

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
F(x)	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find
$$\frac{dy}{dx}$$
 at x=1.1

2. Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at x= 1.5 from the following data (A.U M/J 2015)

X:	1.5	2	2.5	3	3.5	4
Y:	3.375	7	13.625	24	38.875	59

3. Find y' at x = 51 from the following data

(A.U M/J 2015,2014,2013)

X:	50	60	70	80	90
Y:	19.96	36.65	58.81	77.21	94.61

4. Find y' at x=51 from the following data

(A.U M/J 2015,2014,2013,2012)

X:	50	60	70	80	90
Y:	19.96	36.65	58.81	77.21	94.61

5. The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds. Find the initial acceleration using the entire data. (A.U M/J 2013)

Time(sec)	0	5	10	15	20
Velocity(m/sec)	0	3	14	69	228

6.Using Romberg's rule evaluate $I = \int_0^1 \frac{dx}{1+x}$ correct to three decimal places by taking h = 0.5, 0.25 and 0.125. (A.U M/J 2014, 2015)

9.Evaluate $\int_{0}^{\frac{\pi}{2}} \sin x dx$ using (i)Simpson's $\frac{1}{3}$ rule and (ii) Simpson's $\frac{3}{8}$ th rule, by dividing the range into six equal subintervals. (A.U M/J 2014, 2013)

10.Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $\frac{3}{8}$ rule, dividing the range into 6 equal parts(h=0.2). (A.U M/J 2014, 2012)

11. Evaluate
$$\int_{0}^{2} \int_{0}^{1} 4xy dx dy$$
 by using Simpon's rule and taking $h = \frac{1}{4}$ and $k = \frac{1}{2}$ (**M/J 2012**)

12.Evaluate
$$\int_{2.4}^{2.44.4} xy dx dy$$
 using Simpson's rule(h = k = 0.1). (**M/J 2013**)

UNIT-IV

INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

1. Solve
$$\frac{dy}{dx} = x^2 + y^2$$
, $y(0) = 1$, Use Taylor series method at x = 0.2, and 0.4. (**A.U 2015**)

2.Using Runge –Kutta method of fourth order ,solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
 with y(0)=1 at x=0.2

(A.U 2015,2014,2011)

3. Given
$$\frac{dy}{dx} = xy + y^2$$
, $y(0)=1$, $y(0.1)=1.1169$ and $y(0.2)=1.2774$ find (i) $y(0.3)$ by R.K method of fourth order and (ii) $y(0.4)$ by Milne's method. (A.U 2015,2014,2013,2011)

4. Solve the equation $\frac{dy}{dx} = 1 - y$, giveny(0) = 0 using modified Euler method and tabulate the solution at x = 0.1, 0.2 and 0.3 .hence find y(0.4) by Milne's method.

(A.U 2015,2014,2013,2011)

5. Apply Milne's method, to find a solution of the differential equation $\frac{dy}{dx} = x - y^2$ at x = 0.8, given the values. Use Taylor series method to find y(0.1), y(0.2) and y(0.3). (A.U,2013,2011)

- 6. Using R.K method ,solve y''=y+xy', y(0)=1,y'(0)=0 to find y(0.2) and y'(0.2). (A.U 2015,2014,2013,2010)
- 7. Consider the initial value problem $\frac{dy}{dx} = y x^2 + 1$, y(0) = 0.5 (A.U 2015,2014,2013,2011)
- (i) Using the modified Euler's Method, find y(0.2)
- (ii)Using 4th order R-K method find y(0.4) and y(0.
 - (iii) Using Adam's Bashforth Method.to find y(0.8)

UNIT-V

BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

1. Obtain the Crank-Nicholson finite difference method by taking $\lambda = \frac{kc^2}{h^2} = 1$. Hence find u(x,t)

in the root for two times steps for the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, given

$$u(x,0)=\sin(\pi x), u(0,t)=u(1,t)=0.$$
Take $h = 0.2$.

(A.U 2015,2013)

2. Solve $\nabla^2 u = 8x^2 \ y^2$ in the square region $-2 \le x, y \le 2$ with u=0 on the boundaries after dividing the region into 16 sub intervals of length one unit. (A.U 2015,2013)

3. Evaluate : u(x,t) at the pivotal points of the equation $\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}$, $\frac{\partial u}{\partial t}(x,0)$

=0,,u(0,t)=0,u(5,t)=0,and u(x,0)=
$$x^2$$
(5-x)taking Δx =1 and upto t = 1.25.

(A.U 2012)

4. Solve $u_t=u_{xx}$ in 0< x<5, t>0 given that $U(x.0)=x^2(25-x^2)$, U(0,t)=0=U(5,t) .compute u upto t=2 with $\Delta x=1$ by using Bender Smith formula. (A.U 2013)

5. UseCrank Nicholson scheme to solve $\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}$, 0<x<1 and t>0 given u(x,0)=0,u(0,t)=0, and u(1,t)=100t. Compute u(x,t) for one time step taking $\Delta x=1/4$. (A.U 2015,2014,2011)

6. Deduce the standard five point formula for $\nabla^2 u = 0$ hence solve it over the square region given by the boundary conditions as in figure below (A.U 2012,2011,2010)

u_1	u_2
u_3	u_4

7. .Solve
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
, 00 given

u(x,0)=0, $\frac{\partial u}{\partial t}(x,0)=0$, u(0,t)=0 and $u(1,t)=100 \sin \pi t$. Compute u(x,t) for the four time steps with h=0.25. (A.U 2013,2011)

8. Solve the boundary value problem y''=xy subject to the condition y(0)+y'(0)=1, y(1)=1 taking h=1/3 by finite difference method. (A.U 2014,2010)
